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LEITER TO THE EDITOR 

Semiclassical approach to ground states within the 
Klein-Gordon equation 

N A KobylinskytO, S S StepanovS and R S TutikS 
t Institute for Theoretical Physics, Kiev, 252130, USSR 
$ Department of Physics, Dniepropetrovsk State University, Dniepropetrovsk, 320625, 
USSR 

Received 11 December 1989 

Abstract. A new tool for deriving Regge trajectories and energy eigenvalues for ground 
states of central potentials is applied to the Klein-Gordon equation. Based upon the 
h-expansion, the simple recursion formulae are presented. The problems of the n-mesonic 
atom and funnel-shaped potential are treated with this technique. 

Several attempts have been made to treat the relativistic aspects of an arbitrary bound 
state in static potentials in the Klein-Gordon equation. For most potentials, however, 
this equation is not exactly soluable and one, therefore, has to resort to some approxima- 
tion scheme. In particular, Au and Aharonov (1981), Lai (1982), and Rogers (1985) 
used a logarithmic perturbation theory to determine the energy eigenvalues E, , ,  with 
integer orbital ( 1 )  and radial ( n )  quantum numbers; at that time Miramontes and 
Pajares (1984) and Chatterjee (1986) employed the non-perturbative 1/ N-expansion 
method for this goal ( N  is the spatial dimensionality). 

But in hadron physics it is more convenient to formulate the problem otherwise 
and to calculate I,( E ) ,  i.e. parent ( n  = 0) and daughter ( n  = 1,2, . . .) Regge trajectories 
a ( E )  (Collins 1977). Since in a system with a discrete spectrum the Regge trajectories 
are just the inverse functions of the energy eigenvalues considered as analytic functions 
of the angular momentum variable, one can resort to usual quantum mechanical 
methods. Within the Klein-Gordon equation the useful, although quite bulky, per- 
turbative technique for the Regge trajectory expansion has been developed by Muller 
(1965) with application to a Yukawa-type potential and spread to a general even power 
potential (Sharma and Iyer 1982). A method based on the use of continued fractions 
was also offered (Bhargava and Sharma 1983). 

Recently, a powerful new tool for deriving Regge trajectories and energy eigenvalues 
for bound states of central potentials within the Schrodinger equation was proposed 
by Kobylinsky er a1 (1989). Based upon the semiclassical expansions in Planck’s 
constant h, this method is non-perturbative in nature and it can be calculated by a 
simple algebraic recursion method. In the present letter, we would like to extend this 
technique to a relativistic case in which the Klein-Gordon equation is used. 

The radial part of the Klein-Gordon equation (in units C = 1) for a scalar particle 
of mass m in the presence of a fourth-component Lorentz vector potential V , ( r )  and 
a scalar potential V , ( r )  is given by 
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where a prime denotes a derivative with respect to its argument. Expressed, for 
simplicity, in the form 

h2  U”( r )  = [ G( r, E )  + A / r 2 ]  U (  r )  ( 2 )  

G(r ,  E ) = ( m +  V s ( r ) ) 2 - ( E -  Vv(r))2 (3)  

with A = h21( I + 1) and potential function 

this equation is the subject of the following discussion. 
For the sake of brevity we shall limit our detailed discussions to the ground states 

disposed along the parent trajectory. In this case, assuming that the potentials are 
sufficiently smooth and the bound states are well defined, the wavefunction does not 
contain any zeros, so its logarithm is regular and we can put 

U (  r )  = exp[S( r ) /  h ] .  (4) 

h C ’ ( r ) + C 2 ( r ) =  G(r,  E ) + A / r 2  ( 5 )  

It is then found by direct substitution that equation (2)  takes the Riccati form 

where C ( r )  = S ’ ( r ) .  
By analogy with the non-relativistic treatment, we seek a semiclassical solution to 

(5) by expanding the logarithmic derivative of the wavefunction in power series in 
Planck’s constant h : 

a 

C ( r ) =  Ck(r ) f ik  
k = O  

So we are interested in Regge trajectories, and assume that A = h21(1+ 1) is a function 
of the energy variable E and Planck’s constant, and may also be written as an 
h-expansion series 

oc, 

A = A ( E ,  h ) =  C A k ( E ) h k .  
k = O  

(7) 

Through the use of the h-expansions (6) and (7), on comparing coefficients of various 
powers in h, from equation (5) we then obtain 

Ci( r )  = G( r, E )  + A,( E ) /  r2 

C&( r )  + 2C0( r)C1( r )  = A,(  E ) /  r2  
... 

k 
C L - , ( r ) +  Ci(r)Ck-,(r)  = A k ( E ) / r 2 .  

, = O  

The recurrence system at hand is solvable if we know A o ( E ) ,  which determines, 
as was treated earlier by Kastrup (1983), the bifurcation (or focal, or critical) curve 
in the angular momentum-energy plane. 

Let our system be a classical mechanical system in a ground state with angular 
momentum L, and L2 = A,. This state, by definition, is the state with minimal energy. 
So, in the classical limit, A = 0, the Klein-Gordon particle executes a circular motion 
with energy 

E,(L)  = J ( m +  v s ( r o ) ) 2 + L 2 / r ~ +  vv(ro) ( 9 )  

where r, is the radius of the stable circular orbit. 
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For energies E above Eo we will have a bounded motion, but for E < E,  there is 
no motion at all. Consequently, the curve Eo( L )  defines a bifurcation set in the ( L ,  E )  
plane and will play the part of the leading approximation for the Regge trajectories. 
It may be made to appear more explicitly in our designations as 

where r, = ro( E )  is the real positive root of the equation 

( 1 1 )  
A,( E ) r0 G(ro,  E ) + T =  G(ro,  E ) + -  G’(ro, E)=O.  

10 2 

Then from the first equation of the system (8) in the neigbourhood of the point r, 
we have 

where the minus sign is chosen from a boundary condition, and 

k + 3  
2 

rgki2 G ( k + 2 ’ (  r, ,  E )  + (-  l ) k  - roG’( To), g k ( E )  = ___ ( k + 2 ) !  

k = 0 ,  1 , 2 , .  . . 
Due to CO( r,) = 0, the second equation from the system (8) gives immediately 

A , ( E ) =  -rog;’*(E).  ( 1 4 a )  
Next we find Cl(r) and pass to the third equation from (8), and so on, which results 
in 

L [3+ya,-2la +sa --Ua + 9 ’ a 2 + 2 ’ a 2 - 5 3 a  a 1 6 2  8 3  1 6 4  6 4 1  3 2 2  1 6 1 2  A , ( E ) =  -- 
A l ( E )  

where ak = g k ( E ) / g O ( E ) .  
Finally the h-expansion for the Regge trajectory takes the form 

a ( E )  = a, (E)  + h a , ( E ) +  h 2 a , ( E )  +. . . ( 1 5 a )  
with 

a,( E )  = A;’* (E)  

k =  1 , 2 , 3 , .  . . . 
Notice that the expression for a ( E )  can be inverted at fixed I-values to yield the 

energy eigenvalues E”,,. To illustrate the method, we consider some examples. 
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(1 )  n-mesonic atom. This classical example is interesting since it has an exact 
solution. There is only the vector potential V,( r )  = -Ze2/r  in this case. Consequently 
we have 

G(r,  E )  = m2 - ( E  + 7)’ 
and from equations ( 1 1 )  and ( 1 3 )  it follows that 

m2 
Ao(E)=(Ze2)’- 

m’- E’ m 2 -  E’ 
E 

ro( E ) = Ze2 ~ 

g k (  E )  = ( - l ) k ( k +  1 ) (  m2 - E’) 

Then the h-expansion for A(E,  h )  takes the form 

U k  = ( - 1 )  (k + 1 )  k = 1,2,  . . . 

(Ze’m)’ Ze2E 
A ( E ,  h)=h21(l+1)=--  m2 - E 2  ( m2 - E 2 ) i / 2  h. 

After transforming this relation 
2 Ze2 E 

we receive the exact result for the relativistic ground state .n-mesonic atom energies: 
=Ze4 - I / ’  

Eo,, = m( 1 +-) 

where 

h 
2 

A =-+ (h2(Z+4)’- ( Z e 2 ) 2 ) 1 / 2  1 = 0 , 1 , 2  , . . . )  

which is familiar from standard quantum mechanics textbooks. 

(2) Funnel-shupedpotential. Taking the increasing part of the potential as a Lorentz 
scalar, we write for the potential function 

G(r, E )  = ( m  + br)’ - ( E  + q /  r)’. (20) 
Then it follows that 

Ao( E )  = b2r:+ mbri+ qEro+ q2 

and 

A , ( E )  = -(4b2r~+3mbr~+qEr0)’/’  

where ro is the real positive root of the equation 

2b2rA+ 3bmri + ( m 2  - E2)ro - qE = 0. (23) 
The following terms of the expansion for A are derived from equations (14b) and 
(14c) by substitution 

a ,  = -26 ( 1 + 2p + 2 y )  

a,  = S(3 + 5p + 5 y )  
(24u)  

(246) 
= -26(2 + 3 p  + 3 y )  

u4= 6 ( 5 + 7 P + 7 7 )  
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Table 1.  The values of the parent Regge trajectory with one, two and three quantum 
corrections (a"'= a,+ h a , ,  a"'= a"'+ fi2a,, a'''= a'"+ h3a,)computedforthefunnel-  
shaped potential at the energies E,".;"', obtained by numerical integration (Krasemann 
1981). The eigenvalues Eh:;, ELT;, E$ are computed by inverting formulae for a"', a ( 2 ) ,  
aI3' with fixed I-values. 

I 

0 -0.0493 -0.0153 0.0060 1 .5494 1.5389 1.5356 1.533 
1 0.9900 0.9985 1.0006 1.7621 1.7607 1.7604 1.760 
2 1.9976 2.0008 2.0015 1.9043 1.9039 1.9038 1.904 

where 

6 = 1 + 3P + 4y. 

Table 1 illustrates the speed and accuracy of our technique on the parent Regge 
trajectory calculation with one, two and three quantum corrections, computed for the 
funnel-shaped potential with parameters m = 1.370 GeV, b = 0.104 29 (GeV)', q = 0.26 
at the energies E,",'"' (in GeV), obtained by numerical integration (Krasemann 1981). 
The eigenvalues E;: / ,  EL:), E:/ ,  computed at fixed I-values by the formulae for the 
Regge trajectory with one, two and three quantum corrections, are displayed as well. 
It is seen that listed values are in good agreement with exact ones, manifesting the 
improvement with increasing 1. 

In conclusion, we have extended the h-expansion for parent Regge trajectories, 
developed recently within non-relativistic quantum mechanics, to the relativistic case 
in which the Klein-Gordon equation is used. For the Coulomb potential this technique 
is found to give the exact result. Numerical work with the funnel-shaped potential 
proves that first terms of the expansions already provide high accuracy for the spectrum. 
The generalisation to an arbitrary excited bound state is to be published elsewhere. 

The authors would like to thank Professor G M Zinovjev for many useful discussions. 
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